12 research outputs found

    Umweltwirkung von Bio-Betrieben: Ursachen und Optimierungsmöglichkeiten

    Get PDF
    Agriculture has manifold impacts on the environment and plays an important role in the environmental impacts of food chains. Previous studies have shown that organic farming can reduce these environmental impacts. But also within organic farms there is a high variability in their impacts on the environment. In our case study with five organic dairy farms, the farm with the highest energy demand used over 2.5 times more energy than the farm with the lowest energy demand. This indicates that further optimisations are possible. Therefore, the farmer is an important factor. The efficient use of his own resources together with an adept combination of different branches can contribute to the ecological optimisation of his farm. But for every farm and every environmental impact, different means of productions play a crucial role. For a longterm reduction of the environmental impacts of a farm a holistic, individual and detailed analysis considering all impacts of the life cycle is essential

    Ă–kobilanz von Rind-, Schweine- und GeflĂĽgelfleisch aus konventionellen, tierfreundlichen und biologischen Produktionssystemen

    Get PDF
    The study compared the environmental impacts of different production systems (conventional, increased animal welfare label and organic) for beef, pork and chicken meat at the farm gate using model farms based on Swiss real farm data. Results showed that feeding and feed production had a high influence, particularly for monogastric animals. Organic farming had lower mineral resource use and ecotoxicity due to the ban of mineral fertilisers and pesticides but had a lower productivity per area, which influenced several impact categories such as eutrophication and land use negatively when expressed per kg live weight. Fundamentally, most of the decisive parameters for the environmental impacts of a production system turned out to be generally valid for both conventional and organic production

    On the link between economic and environmental performance of Swiss dairy farms of the alpine area

    Get PDF
    Purpose: Promoting the economic and environmental performance of Swiss farms is a major objective of Swiss agricultural policy. In the present paper, we investigate the relationship between the economic and global environmental performance of the Swiss dairy farms in the alpine area. Methods: The analysis relies on a sample of 56 dairy farms from the Farm Accountancy Data Network, for which highly precise and comprehensive Life Cycle Assessments have been carried out. The work income per family work unit is used as indicator of the economic performance of a farm. The so-called global environmental performance of a farm is, for its part, measured by means of an eco-efficiency indicator for each environmental impact considered (demand for non-renewable energy resources, eutrophication potential, aquatic ecotoxicity potential, human toxicity potential and land use) and of an aggregate eco-efficiency indicator assessed using a Data Envelopment Analysis-based approach. The relationship between economic and global environmental performance is assessed by means of non-parametric Spearman's rank correlation analysis. Results: The results of the analysis reveal the existence of a positive relationship between economic and global environmental performance. This positive relationship exists for all environmental issues considered and thus also for the aggregate eco-efficiency indicator. Its strength, however, substantially varies from one issue to another. Conclusions: This study provides the evidence that there is no trade-off between economic and global environmental farm performance. When they improve their economic performance, farms also tend to improve their global environmental performance and vice versa. This finding is of central relevance for policy-makers as it should contribute to improving the acceptance among farmers of the environmental objectives of Swiss agricultural policy in terms of an increase in environmental resource use productivity. In this sense this work provides valuable insights into the sustainable performance of the Swiss dairy sector in the alpine are

    Sustainable and healthy diets: trade-offs and synergies : final scientific report

    Get PDF
    This project aimed at analysing trade-offs and synergies between healthy nutrition and sustainable food systems. First, we identified nutritional patters of the Swiss population based on representative consumption data. The health impacts of these nutritional patterns were then analysed based on a review of the scientific literature on health impacts of food commodities and diets and by calculating the Alternate Healthy Eating Index (AHEI), the Mediterranean Diet Score (MDS) and Disability Adjusted Life Years (DALYs) of the nutritional patterns. Second, we comprehensively analysed health, environmental, social and economic impacts and related trade-offs and synergies for a number of future scenarios of Swiss agricultural production and food consumption. For this, we used a modelling approach, linking three different models: a global mass flow model, a system dynamics model and an environmentally extended input-output model. We modelled ten different scenarios for the Swiss Food Sector in 2050. These scenarios were either developed in a participatory process during a series of interviews and group discussions with different groups of stakeholders or optimised environmental impacts while at the same time complying with different nutritional and agronomic restrictions. Three main scenarios were analysed with all three models in detail. Among these main scenarios was the SwissFoodPyramid2050 Scenario, which assumes a widespread implementation of the nutritional recommendations according to the Swiss Food Pyramid. The FeedNoFood2050 Scenario assumes an improved use of agricultural land by feeding only grass and by-products to livestock, which was not competing with direct human nutrition, i.e. did not require arable land (neither in Switzerland nor abroad). The third scenario was a reference scenario, which assumes no changes in diets until 2050 and which was used to compare the two alternative scenarios. The other scenarios were targeted at specific questions such as minimizing greenhouse gases. Our results illustrate two visions of how healthy diets and sustainable food systems could look like. Both the SwissFoodPyramid2050 and the FeedNoFood2005 scenarios would require similar dietary changes, such as a reduction of meat consumption and an increase of consumption of pulses. However, there are also fundamental differences between the diets in the two alternative scenarios, e.g. regarding the type of meat consumed. These differences can be interpreted as trade-offs which result from agronomic boundary conditions such as the coupled production of milk and meat, the availability of natural resources, such as grassland and co-products of food processing and health aspects of Swiss diets. Of primary importance in this respect was the use of permanent grasslands and the co-production of veal and beef with dairy production due to environmental reasons and reasons for optimally utilizing available resources. This means, if permanent grassland should be maintained as an ecosystem, dairy production would provide the basis for animal proteins. Thus, while in the FeedNoFood2050 Scenario veal and rather low-quality beef from dairy cows is consumed instead of meat from monogastrics, the SwissFoodPyramid2050 Scenario would result in a higher amount of meat from monogastrics. Our results imply that there is a lack of a comprehensive food systems view in the current discussion on healthy and sustainable diets. Stronger coherence between health, food and agricultural policy is needed to account for systemic boundary conditions and thus to allow for minimising trade-offs and maximise synergies. Current agricultural policies fail to address the health perspective. Financial support for meat and sugar producers, which lead to lower prices for those products and ultimately to a higher consumption than without these policies, are two obvious examples. Yet, comprehensive visions such as the SwissFoodPyramid scenario, the FeedNoFood Scenario or optimised scenarios would require an even more complex policy mix of incentives, regulations and information campaigns. This would probably need an adaptation of the current institutional setting and division of competences between the Federal Offices for Agriculture (FOAG) and for the Environment (FOEN), the State Secretariat for Economic Affairs (SECO) and the Federal Food Safety and Veterinary Office (FSVO). A commonly shared vision, including specific goals with respect to how the Swiss food system should look like, is urgently needed. Developing such a vision needs to involve all operators and stakeholders of the food system, as our results imply that more sustainable and healthy diets do not necessarily go along with financial benefits of both producers and consumers. These trade-offs and the knowledge of behavioural economics need to be considered for designing settings which create mutual benefits for operators in the food sector. For instance, neither the majority of consumers, food industry nor agricultural producers can be expected to respond altruistically as an entire sector in the long term. Therefore, policy needs to set financial incentives for internalising environmental and social externalities in order to push and pull the food system towards sustainability. Furthermore, it is crucial to account for agronomic boundary conditions and systemic aspects, such as the role of ruminants in utilizing grasslands and the unavoidable link of milk and meat production

    Trade-offs and synergies between human health and sustainability of Swiss dietary scenarios

    Get PDF
    Purpose: Aspects of human health and sustainability of diets are often analysed separately. Food systems dynamics, such as the availability of permanent grasslands, are often not accounted for in the assessment of diets based on attributional LCAs. This paper aims at an integrated analysis of diets focusing on trade-offs and synergies between healthy nutrition and sustainable food systems. Methods: We used an integrated modelling approach, linking three different models: a global mass flow model, a system dynamics model and an environmentally extended input-output model. The models were used to analyse human health, environmental, social and economic impacts and related trade-offs and synergies for a number of future scenarios of Swiss agricultural production and food consumption for three scenarios for the Swiss Food Sector in 2050. These scenarios were either developed in a participatory process during a series of interviews and group discussions with different groups of stakeholders or optimised environmental impacts while at the same time complying with different nutritional recommendations and agronomic restrictions. Results and discussion: Our results illustrate two scenarios of how healthy diets and sustainable food systems could look like. Both the SwissFoodPyramid2050 and the FeedNoFood2050 scenarios require similar dietary changes, such as a reduction of meat consumption and an increase in consumption of pulses. However, there are also some fundamental differences between the diets in the two alternative scenarios, e.g. regarding the type of meat consumed. These differences can be interpreted as trade-offs that result from agronomic boundary conditions such as the coupled production of milk and meat, the availability of natural resources, such as grassland and co-products of food processing, and health aspects of Swiss diets. Conclusions: Our results imply that there is a lack of a comprehensive food systems’ view in the current discussion on healthy and sustainable diets. Stronger coherence between human health, food and agricultural policy is needed to account for systemic boundary conditions and, thus, to allow for minimising trade-offs and maximise synergies. Current agricultural policies fail to address the health perspective. Financial support for meat and sugar producers, which lead to lower prices for those products and ultimately to a higher consumption than without these policies, are two obvious examples. Yet, comprehensive visions such as the SwissFoodPyramid scenario, the FeedNoFood Scenario or optimised scenarios would require an even more complex policy mix of incentives, regulations and information campaigns

    Sustainable and healthy diets: Trade-offs and synergies. Final scientific report

    Get PDF
    This project aimed at analysing trade-offs and synergies between healthy nutrition and sustainable food systems. First, we identified nutritional patters of the Swiss population based on representative consumption data. The health impacts of these nutritional patterns were then analysed based on a review of the scientific literature on health impacts of food commodities and diets and by calculating the Alternate Healthy Eating Index (AHEI), the Mediterranean Diet Score (MDS) and Disability Adjusted Life Years (DALYs) of the nutritional patterns. Second, we comprehensively analysed health, environmental, social and economic impacts and related trade-offs and synergies for a number of future scenarios of Swiss agricultural production and food consumption. For this, we used a modelling approach, linking three different models: a global mass flow model, a system dynamics model and an environmentally extended input-output model. We modelled ten different scenarios for the Swiss Food Sector in 2050. These scenarios were either developed in a participatory process during a series of interviews and group discussions with different groups of stakeholders or optimised environmental impacts while at the same time complying with different nutritional and agronomic restrictions. Three main scenarios were analysed with all three models in detail. Among these main scenarios was the SwissFoodPyramid2050 Scenario, which assumes a widespread implementation of the nutritional recommendations according to the Swiss Food Pyramid. The FeedNoFood2050 Scenario assumes an improved use of agricultural land by feeding only grass and by-products to livestock, which was not competing with direct human nutrition, i.e. did not require arable land (neither in Switzerland nor abroad). The third scenario was a reference scenario, which assumes no changes in diets until 2050 and which was used to compare the two alternative scenarios. The other scenarios were targeted at specific questions such as minimizing greenhouse gases. Our results illustrate two visions of how healthy diets and sustainable food systems could look like. Both the SwissFoodPyramid2050 and the FeedNoFood2005 scenarios would require similar dietary changes, such as a reduction of meat consumption and an increase of consumption of pulses. However, there are also fundamental differences between the diets in the two alternative scenarios, e.g. regarding the type of meat consumed. These differences can be interpreted as trade-offs which result from agronomic boundary conditions such as the coupled production of milk and meat, the availability of natural resources, such as grassland and co-products of food processing and health aspects of Swiss diets. Of primary importance in this respect was the use of permanent grasslands and the co-production of veal and beef with dairy production due to environmental reasons and reasons for optimally utilizing available resources. This means, if permanent grassland should be maintained as an ecosystem, dairy production would provide the basis for animal proteins. Thus, while in the FeedNoFood2050 Scenario veal and rather low-quality beef from dairy cows is consumed instead of meat from monogastrics, the SwissFoodPyramid2050 Scenario would result in a higher amount of meat from monogastrics. Our results imply that there is a lack of a comprehensive food systems view in the current discussion on healthy and sustainable diets. Stronger coherence between health, food and agricultural policy is needed to account for systemic boundary conditions and thus to allow for minimising trade-offs and maximise synergies. Current agricultural policies fail to address the health perspective. Financial support for meat and sugar producers, which lead to lower prices for those products and ultimately to a higher consumption than without these policies, are two obvious examples. Yet, comprehensive visions such as the SwissFoodPyramid scenario, the FeedNoFood Scenario or optimised scenarios would require an even more complex policy mix of incentives, regulations and information campaigns. This would probably need an adaptation of the current institutional setting and division of competences between the Federal Offices for Agriculture (FOAG) and for the Environment (FOEN), the State Secretariat for Economic Affairs (SECO) and the Federal Food Safety and Veterinary Office (FSVO). A commonly shared vision, including specific goals with respect to how the Swiss food system should look like, is urgently needed. Developing such a vision needs to involve all operators and stakeholders of the food system, as our results imply that more sustainable and healthy diets do not necessarily go along with financial benefits of both producers and consumers. These trade-offs and the knowledge of behavioural economics need to be considered for designing settings which create mutual benefits for operators in the food sector. For instance, neither the majority of consumers, food industry nor agricultural producers can be expected to respond altruistically as an entire sector in the long term. Therefore, policy needs to set financial incentives for internalising environmental and social externalities in order to push and pull the food system towards sustainability. Furthermore, it is crucial to account for agronomic boundary conditions and systemic aspects, such as the role of ruminants in utilizing grasslands and the unavoidable link of milk and meat production

    Nachhaltige und gesunde Ernährung: Zielkonflikte und Synergien

    Get PDF
    Forschungsfragen 1. Wie ernährt sich die Schweizer Bevölkerung derzeit und welche Gesundheits- und Nachhaltigkeitswirkungen gehen davon aus? 2. Wie können Nachhaltigkeit und Gesundheit im Schweizer Ernährungssystem verbessert werden? 3. Welche Zielkonflikte und Synergien gibt es zwischen Nachhaltigkeit und Gesundheit? 4. Welche Empfehlungen können an unterschiedlichen Akteursgruppen gegeben werden, um gesunde und nachhaltige Ernährung zu fördern

    Consommation d'énergie des exploitations agricoles suisses au regard de l'analyse du cycle de vie (ACV), premiers résultats d'enquête

    No full text
    L'analyse du cycle de vie est une méthode de plus en plus utilisée pour améliorer les processus de production agricole. À travers l'étude des données recueillies via l'analyse du cycle de vie d'exploitations agricoles suisses, les auteurs nous proposent ici d'identifier les postes de production les plus énergivores afin de déterminer les actions possibles en vue de réduire efficacement la consommation d'énergie non renouvelable

    Local versus Global Environmental Performance of Dairying and Their Link to Economic Performance: A Case Study of Swiss Mountain Farms

    No full text
    Complying with the carrying capacity of local and global ecosystems is a prerequisite to ensure environmental sustainability. Based on the example of Swiss mountain dairy farms, the goal of our research was firstly to investigate the relationship between farm global and local environmental performance. Secondly, we aimed to analyse the relationship between farm environmental and economic performance. The analysis relied on a sample of 56 Swiss alpine dairy farms. For each farm, the cradle-to-farm-gate life cycle assessment was calculated, and the quantified environmental impacts were decomposed into their on- and off-farm parts. We measured global environmental performance as the digestible energy produced by the farm per unit of global environmental impact generated from cradle-to-farm-gate. We assessed local environmental performance by dividing farm-usable agricultural area by on-farm environmental impact generation. Farm economic performance was measured by work income per family work unit, return on equity and output/input ratio. Spearman’s correlation analysis revealed no significant relationship, trade-offs or synergies between global and local environmental performance indicators. Interestingly, trade-offs were observed far more frequently than synergies. Furthermore, we found synergies between global environmental and economic performance and mostly no significant relationship between local environmental and economic performance. The observed trade-offs between global and local environmental performance mean that, for several environmental issues, any improvement in global environmental performance will result in deterioration of local environmental performance and vice versa. This finding calls for systematic consideration of both dimensions when carrying out farm environmental performance assessments
    corecore